nba赛程的分析与评价数学建模(NBA赛程设计)

2022-11-07 3:12:06 体育资讯 ssrunhua

NBA量化指标

NBA是全世界篮球迷们最钟爱的赛事之一,姚易加盟以后更是让中国球迷宠爱有加。NBA共有30支球队,西部联盟、东部联盟各15支,大致按照地理位置,西部分西南、西北和太平洋3个区,东部分东南、中部和大西洋3个区,每区5支球队。对于2008~2009新赛季,常规赛阶段从2008年10月29日(北京时间)直到2009年4月16日,在这5个多月中共有1230场赛事,每支球队要进行82场比赛,附件1是30支球队2008~2009赛季常规赛的赛程表,附件2是分部、分区和排名情况(排名是2007~2008赛季常规赛的结果),见 。

对于NBA这样庞大的赛事,编制一个完整的、对各球队尽可能公平的赛程是一件非常复杂的事情,赛程的安排对球队实力的发挥和战绩有一定的影响,从报刊上经常看到球员、教练和媒体对赛程的抱怨或评论。这个题目主要是要求用数学建模方法对已有的赛程进行定量的分析与评价:

1)为了分析赛程对某一支球队的利弊,你认为有哪些要考虑的因素,根据这些因素将赛程转换为便于进行数学处理的数字格式,并给出评价赛程利弊的数量指标。

2)按照1)的结果计算、分析赛程对姚明加盟的火箭队的利弊,并找出赛程对30支球队最有利和最不利的球队。

3)分析赛程可以发现,每支球队与同区的每一球队赛4场(主客各2场),与不同部的每一球队赛2场(主客各1场),与同部不同区的每一球队有赛4场和赛3场(2主1客或2客1主)两种情况,每支球队的主客场数量相同且同部3个区的球队间保持均衡。试根据赛程找出与同部不同区球队比赛中,选取赛3场的球队的方法。这种方法如何实现,对该方法给予评价,也可以给出你认为合适的方法。

数学建模论文 NBA赛程规划

衡量一个赛程优劣,除各队每两场比赛间相隔场次数上限d这个指标外,各队在整个赛程中总间隔场次数e的差异程度E也是一个重要的指标。可设E=Emax-Emin,E越大说明各队总体休整间隔数的差异大。见表2、表3,分别是n=8,n=9的满足d=[(n-3)/2]的赛程,n=8的此赛程E=19-17=2;n=9的赛程E=28-21=7。这里n=8的赛程中差异度较小,表现出各队总体休整时间较为均匀,因而此赛程就指标而言,也较为公平的,n=9的赛程中差异度较大,因而此赛程仍有不公平性。

此外,除了每两场比赛间相隔场次数外,各队比赛之前的休息时间,即首轮比赛的出场次序,对比赛的成绩仍有一定的影响,(如在首轮中靠后面比赛可减少旅途劳累,可先观察各队情况等等)。如表2中,4队、5队首轮最后比赛,表3中,9队首轮最后比赛。实际中此因素无法解决,常采取抽签的方法来决定首轮的出场次序。

关于赛程的优劣,除考虑公平性外,还有效率性问题,即考虑如何合理紧凑地安排赛程,使赛程的从时间较短。

6.模型评价

6.1 本模型的结果成功地给出了同一场地单循环赛各队每两场比赛中间相隔场次数上限的计算公式,有一定的理论意义与实际意义。

6.2关于同一场地单循环赛赛程编派法,至今实际中都采用“循环规则”,(见上文n为偶数编派法),通过我们的研究发现此规则虽然简易、对于n为偶数的赛程,符合d=[(n-3)/2],从而有公平性,对于n为奇数,编派的赛程d[(n-3)/2],有失公平性。表4是用实际方法对n=7编制的赛程(首轮1队轮空,1队不动)。其弊端是此赛程d=1,而按公式d=[(n-3)/2]=2。说明各队每两场比赛中间极不均等,如有间隔6场,有间隔1场,具体到一个队(如5队比赛与休整时间极不均等)。从比赛与休整的节奏,第一队最有利,第五队最不利,另外从各队总间隔场次数看,也有较大差异,说明实际赛程编制法有待改进。而本模型算法提出的“生成规则”(见上文n为奇数编派法)既简便又公平。

东区15支 西区15支常规赛:一支球队要跟同区的每一支球队各打4场比赛(两场主场、两场客场)和不同区的每支球队各打两场比赛(一场主场、一场客场)。这样下来每一支球队在常规赛都要打八十二场比赛。顺便把算法写出来:一个区的比赛总场数:15× 14×(4+2)-30=1230(场) 一个区的球队总数为15个 每只球队一个赛季的比赛场数就为:1230/15=82(场)

常规赛打完,每个赛区战绩排在前八名的进入季后赛。赛区的第一名对第八名、第二名对第七名、第三名对第六名、第四名对第五名。季后赛是打淘汰制比赛,每轮比赛是七场四胜制

最终决出赛区第一名。两个赛区的第一名争夺总冠军

数学建模的建模题目

现在我给个方案你,里面是4个球队的,不过你照模式改成5个球队的就可以了啊。

为方便起见,现将这四个队伍分别命名为A、B、C、D。

下面我们分两大类情况讨论

一、

所有比赛都不出现平局

1.

请看以下三幅双向连通图:

(1)

(2

(3

这三幅双向连通图显然表示以下排名及得分的情况为:

(1)A:9

D:6

B:3

D:0

这种情况下,显然不存在并列的队伍;

(2)(A

B

C):6

D:0

这种情况下,A

B

C

并列第一,

D

第二名;

(3)D:9

(A

B

C):3

这种情况下,D第一名,A

B

C并列第二名。

以上得分及排名情况并不存在争议,在此我们不做多余的讨论。

2.

请看右边这幅双向连通图:

如右图所示,此图中各队伍的得分为:

A:6

B:3

C:3

D:6

此时按照

(A

D)(B

C)的排名方式

或者是按照

A

D

B

C

的排名方式是否就算是公平的排名方式呢?

(4)

下面我们来分析一下:

1建立模型:

定义相邻接矩阵如下:

故邻接矩阵为:

对于n=4

个顶点的双向竞赛连通图,存在正数r,

使得邻接矩阵A

r

0,A成为素阵

2模型求解:

利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有

利用MATLAB新建M文件输入如下代码:

A=[0

3

3;

3

0;

3

0;

3

3

0];

V=eig(A);

X=max(V)

计算得特最大特征值:

λ=4.1860

经过归一化计算后得到矩阵:

S =(0.623,0.467,0.528,0.530)

T

所以图(4)所示的比赛排名结果为:

A

D

C

B

二、

比赛中出现平局的情况

1.

请看以下三幅双向连通图:

这三幅双向连通图显然表示以下排名及得分的情况为:

(5)A:7

D:5

B:2

D:1

这种情况下,显然不存在并列的队伍;

(6)D:9

(A

B

C):2

这种情况下,D第一名,A

B

C并列第二名;

(7)(A

B

C):2

D:0

这种情况下,A

B

C

并列第一,

D

第二名。

以上得分及排名情况并不存在争议,在此我们不做多余的讨论。

2.

请看右边的双向连通图:

如右图所示,此图中各队伍的得分为:

A:5

B:2

C:2

D:6

此时按照

(D

A)(B

C)的排名方式

或者是按照

D

A

B

C

的排名方式

是否就算是公平的排名方式呢?

同样的我们通过建立数学模型来分析一下:

1建立模型:

定义相邻接矩阵如下:

故邻接矩阵为:

对于n=4

个顶点的双向竞赛连通图,存在正数r,

使得邻接矩阵A

r

0,A成为素阵

2模型求解:

利用Perron-Frobenius定理,素阵A的最大特征根为正单根λ,对应正特征向量S,且有

利用MATLAB新建M文件输入如下代码:

A=[0

1

1

3;

1

1

0;

1

1

0;

3

3

0];

V=eig(A);

X=max(V)

计算得特最大特征值:

λ=

3.2813

经过归一化计算后得到矩阵:

S =(0.493,0.428,0.467,0.530)

T

所以图(8)所示的比赛排名结果为:

D

A

C

B

nba赛程的分析与评价数学建模(NBA赛程设计) 第1张

版权声明:本文发布于生山体育 图片、内容均来源于互联网 如有侵权联系删除
网站分类
标签列表
最新留言